458 research outputs found

    Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-flaring Active Regions

    Full text link
    We analyzed temporal and periodic behavior of sunspot counts (SSCs) in flaring (C, M, or X class flares), and non-flaring active regions (ARs) for the almost two solar cycles (1996 through 2016). Our main findings are as follows: i) The temporal variation of monthly means of daily total SSCs in flaring and non-flaring ARs are different and these differences are also varying from cycle to cycle; temporal profile of non-flaring ARs are wider than the flaring ones during the solar cycle 23, while they are almost the same during the current cycle 24. The second peak (second maximum) of flaring ARs are strongly dominate during current cycle 24, while this difference is not such a remarkable during cycle 23. The amplitude of SSCs in the non-flaring ARs are comparable during the first and second peaks (maxima) of the current solar cycle, while the first peak is almost not existent in case of the flaring ARs. ii) Periodic variations observed in SSCs of flaring and non-flaring ARs are quite different in both MTM spectrum and wavelet scalograms and these variations are also different from one cycle to another; the largest detected period in the flaring ARs is 113 days, while there are much higher periodicities (327, 312, and 256 days) in non-flaring ARs. There are no meaningful periodicities in MTM spectrum of flaring ARs exceeding 45 days during solar cycle 24, while a 113 days periodicity detected from flaring ARs of solar cycle 23. For the non-flaring ARs the largest period is 72 days during solar cycle 24, while the largest period is 327 days during current cycle.Comment: Submitted to Solar Physics, 17 pages, 5 figure

    Selecting Metrics to Evaluate Human Supervisory Control Applications

    Get PDF
    The goal of this research is to develop a methodology to select supervisory control metrics. This methodology is based on cost-benefit analyses and generic metric classes. In the context of this research, a metric class is defined as the set of metrics that quantify a certain aspect or component of a system. Generic metric classes are developed because metrics are mission-specific, but metric classes are generalizable across different missions. Cost-benefit analyses are utilized because each metric set has advantages, limitations, and costs, thus the added value of different sets for a given context can be calculated to select the set that maximizes value and minimizes costs. This report summarizes the findings of the first part of this research effort that has focused on developing a supervisory control metric taxonomy that defines generic metric classes and categorizes existing metrics. Future research will focus on applying cost benefit analysis methodologies to metric selection. Five main metric classes have been identified that apply to supervisory control teams composed of humans and autonomous platforms: mission effectiveness, autonomous platform behavior efficiency, human behavior efficiency, human behavior precursors, and collaborative metrics. Mission effectiveness measures how well the mission goals are achieved. Autonomous platform and human behavior efficiency measure the actions and decisions made by the humans and the automation that compose the team. Human behavior precursors measure human initial state, including certain attitudes and cognitive constructs that can be the cause of and drive a given behavior. Collaborative metrics address three different aspects of collaboration: collaboration between the human and the autonomous platform he is controlling, collaboration among humans that compose the team, and autonomous collaboration among platforms. These five metric classes have been populated with metrics and measuring techniques from the existing literature. Which specific metrics should be used to evaluate a system will depend on many factors, but as a rule-of-thumb, we propose that at a minimum, one metric from each class should be used to provide a multi-dimensional assessment of the human-automation team. To determine what the impact on our research has been by not following such a principled approach, we evaluated recent large-scale supervisory control experiments conducted in the MIT Humans and Automation Laboratory. The results show that prior to adapting this metric classification approach, we were fairly consistent in measuring mission effectiveness and human behavior through such metrics as reaction times and decision accuracies. However, despite our supervisory control focus, we were remiss in gathering attention allocation metrics and collaboration metrics, and we often gathered too many correlated metrics that were redundant and wasteful. This meta-analysis of our experimental shortcomings reflect those in the general research population in that we tended to gravitate to popular metrics that are relatively easy to gather, without a clear understanding of exactly what aspect of the systems we were measuring and how the various metrics informed an overall research question

    Assessing the Impact of Haptic Peripheral Displays for UAV Operators

    Get PDF
    Objectives: A pilot study was conducted to investigate the effectiveness of continuous haptic peripheral displays in supporting multiple UAV supervisory control. Background: Previous research shows that continuous auditory peripheral displays can enhance operator performance in monitoring events that are continuous in nature, such as monitoring how well UAVs stay on their pre-planned courses. This research also shows that auditory alerts can be masked by other auditory information. Command and control operations are generally performed in noisy environments with multiple auditory alerts presented to the operators. In order to avoid this masking problem, another potentially useful sensory channel for providing redundant information to UAV operators is the haptic channel. Method: A pilot experiment was conducted with 13 participants, using a simulated multiple UAV supervisory control task. All participants completed two haptic feedback conditions (continuous and threshold), where they received alerts based on UAV course deviations and late arrivals to targets. Results: Threshold haptic feedback was found to be more effective for late target arrivals, whereas continuous haptic feedback resulted in faster reactions to course deviations. Conclusions: Continuous haptic feedback appears to be more appropriate for monitoring events that are continuous in nature (i.e., how well a UAV keeps its course). In contrast, threshold haptic feedback appears to better support response to discrete events (i.e., late target arrivals). Future research: Because this is a pilot study, more research is needed to validate these preliminary findings. A direct comparison between auditory and haptic feedback is also needed to provide better insights into the potential benefits of multi-modal peripheral displays in command and control of multiple UAVs.Prepared for Charles River Analytics, Inc

    Supporting Intelligent and Trustworthy Maritime Path Planning Decisions

    Get PDF
    The risk of maritime collisions and groundings has dramatically increased in the past five years despite technological advancements such as GPS-based navigation tools and electronic charts which may add to, instead of reduce, workload. We propose that an automated path planning tool for littoral navigation can reduce workload and improve overall system efficiency, particularly under time pressure. To this end, a Maritime Automated Path Planner (MAPP) was developed, incorporating information requirements developed from a cognitive task analysis, with special emphasis on designing for trust. Human-in-the-loop experimental results showed that MAPP was successful in reducing the time required to generate an optimized path, as well as reducing path lengths. The results also showed that while users gave the tool high acceptance ratings, they rated the MAPP as average for trust, which we propose is the appropriate level of trust for such a system.This work was sponsored by Rite Solutions Inc., Assett Inc., Mikel Inc., and the Office of Naval Research. We would also like to thank Northeast Maritime Institute, the MIT NROTC detachment, the crew of the USS New Hampshire, and the anonymous reviewers whose comments significantly improved the paper

    Optimization of Single-Sided Charge-Sharing Strip Detectors

    Get PDF
    Simulation of the charge sharing properties of single-sided CZT strip detectors with small anode pads are presented. The effect of initial event size, carrier repulsion, diffusion, drift, trapping and detrapping are considered. These simulations indicate that such a detector with a 150 µm pitch will provide good charge sharing between neighboring pads. This is supported by a comparison of simulations and measurements for a similar detector with a coarser pitch of 225 µm that could not provide sufficient sharing. The performance of such a detector used as a gamma-ray imager is discussed

    Continued Studies of Single-Sided Charge-Sharing CZT Strip Detectors

    Get PDF
    In this paper, we report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform gammaray spectroscopy and 3-D imaging. We report on continuing laboratory and simulation measurements of prototype detectors with 11×11 unit cells (15×15×7.5mm3 ). We report preliminary measurements of the 3-D spatial resolution. Our studies are aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA’s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT). This design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125µm anode contacts on 225µm pitch. Our studies conclude that finer pitch contacts will be required to improve imaging efficiency

    Further studies of single-sided charge-sharing CZT strip detectors

    Get PDF
    We report progress in the study of a thick CZT strip detector module designed to perform gamma-ray spectroscopy and 3-D imaging. We report preliminary performance measurements of 7.5 mm thick single-sided charge-sharing strip detector prototype devices. This design features both row and column contacts on the anode surface. This electron-only approach addresses problems associated with poor hole transport in CZT that limit the thickness and energy range of double-sided strip detectors. This work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA Black Hole Finder Probe (BHFP)and Advanced Compton Telescope (ACT). This new design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125 μm anode contacts on 225 μm pitch. Our results demonstrate the principle of operation but suggest that even finer anode contact feature sizes will be necessary to achieve the desired performance

    Single-sided CZT strip detectors

    Get PDF
    We report progress in the study of thick CZT strip detectors for 3-d imaging and spectroscopy and discuss two approaches to device design. We present the spectroscopic, imaging, detection efficiency and response uniformity performance of prototype devices. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. These devices can achieve similar performance to pixel detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements. The low channel count strip detector approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in space-based coded aperture or Compton telescope instruments requiring large area, large volume detector arrays. Such arrays will be required for NASA\u27s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT)

    Single-sided CZT strip detectors

    Get PDF
    We report progress in the study of thick CZT strip detectors for 3-D imaging and spectroscopy and discuss two approaches to device design. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements while minimizing the number and complexity of the electronic readout channels. These devices can achieve similar performance to pixel detectors for both 3-D imaging and spectroscopy. The low channel count approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in applications requiring large area detector arrays. We show two single-sided strip detector concepts. One, previously reported, features rows established with collecting contacts and columns with noncollecting contacts. Another, introduced here, operates on a charge sharing principle and establishes both rows and columns with collecting contacts on the anode surface. In previous work using the earlier strip detector concept we reported simulations and measurements of energy and spatial resolution for prototype 5- and 10-mm-thick CZT detectors. We now present the results of detection efficiency and uniformity measurements conducted on 5-mm-thick detectors using a specific configuration of the front-end electronics and event trigger. We discuss the importance of the detector fabrication processes when implementing this approach

    Effect of Nigella sativa L. on heart rate and some haematological values of alloxan-induced diabetic rabbits

    Get PDF
    This study was designed to investigate the effect of an extract of Nigella sativa L. on the heart rate and  some haematological values in alloxan-induced diabetic rabbits. Fifteen New Zealand male rabbits were  divided into three experimental groups: control, diabetic and N. sativa L.-treated diabetic. At the end of the  experimental period (2 months), animals in all three groups were fasted for 12 hours and blood samples  were taken for the determination of glucose levels, RBC and WBC (red and white blood cell) counts,  packed cell volume (PCV), and haemoglobin (Hb) concentration. Heart rates were also measured by a  direct-writing electrocardiograph before the blood withdrawals. It was found that N. sativa L. treatment  increased the lowered RBC and WBC counts, PCV and neutrophil percentage in diabetic rabbits. However,  the WBC count of the N. sativa L. treated diabetic group was still lower than the control. N. sativa L.  treatment also decreased the elevated heart rate and glucose concentration of diabetic rabbits. It is concluded  that oral N. sativa L. treatment might decrease the diabetes-induced disturbances of heart rate and some  haematological parameters of alloxan-induced diabetic rabbits.
    corecore